Circle Inversion and the Pappus Chain

There is a pledge of the big and of the small in the infinite.

-Dejan Stojanović

In the next two posts, we are going to look at two interesting geometric ideas of the 19th century involving circles. Next time, we will consider Poincaré’s disk model for hyperbolic geometry. Today, though, we immerse ourselves in the universe of inversive geometry.


Consider a circle in the infinite 2-dimensional plane:

circle

This circle divides the plane into two regions: the bounded region inside the circle and the unbounded region outside the circle (let’s say that the points on the circle belong to both regions). A natural thing to want to do, now, especially in the context of this blog, would be to try to exchange these two regions, to map the infinite space outside the circle into the bounded space of the circle, and vice versa, in a “natural” way.

I could be bounded in a nutshell, and count myself a king of infinite space.

-William Shakespeare, Hamlet

Upon first reflection, one might be tempted to say that we want to “reflect” points across the circle. And this is sort of right, but reflection already carries a meaning in geometry. Truly reflecting points across the circle would preserve their distance from the circle, so the inside of the circle could only be mapped onto a finite ring whose outer radius is twice that of the circle two. Moreover, it would not be clear how to reflect points from outside this ring into the circle.

Instead, we want to consider a process known as “inversion.” Briefly speaking, we want to arrange so that points arbitrarily close to the center of the circle get sent to points arbitrarily far away from the center of the circle, and vice versa. For simplicity, let us suppose that the circle is centered at the origin of the plane and has a radius of 1. The most natural way to achieve our aim is to send a point P to a point P' that lies in the same direction from the origin as P and whose distance from the origin is the reciprocal of the distance from P to the origin. Here’s an example:

point_inversion
P and P’ get swapped by inversion.

One can check that, algebraically, this inversion sends a point P with coordinates (x,y) to a point P' with coordinates (\frac{x}{x^2+y^2}, \frac{y}{x^2+y^2}). Points inside the circle are sent to points outside the circle, points outside the circle are sent to points inside the circle, and points on the circle are sent to themselves. Moreover, as one might expect from the name, the inversion map is its own inverse: applying it twice, we end up where we started. Perfect!

Wait a second, though. We’re being a little too hasty. What about the origin? Where is it sent? Our procedure doesn’t seem to tell us, and if we try to use our algebraic expression, we end up dividing by zero. Since the origin is inside the circle, it should certainly be sent to a point outside the circle, but all of those points are already taken. Also, since points arbitrarily close to the origin get mapped to points arbitrarily far from the origin, we want to send the origin to a point as far away from itself as possible. At first glance, we might seem to be in a quandary here, but longtime readers of this blog will see an obvious solution: the origin gets mapped to a point at infinity! (And the point at infinity, in turn, gets mapped to the origin.)

(Technical note: Since we’ve added a point at infinity, the inversion map should be seen not as a map on the plane \mathbb{R}^2, but on its one-point compactification (or Alexandroff compactification), \hat{\mathbb{R}}^2. In fact, the inversion map is a topological homeomorphism of \hat{\mathbb{R}}^2 with itself.)

Let’s examine what the inversion map does to simple geometric objects. We have already seen what happens to points. It should also be obvious that straight lines through the origin get mapped to themselves. For example, in the image above, the line connecting P and P' gets mapped to itself. (Here we are specifying, of course, that every line contains the point at infinity.)

A bit of thought and calculation will convince you that lines not passing through the origin get sent to circles that do pass through the origin.

inversion_1
The red line, when inverted across the black circle, gets sent to the red circle.

Since the inversion map is its own inverse, circles passing through the origin get mapped to lines that don’t pass through the origin. Circles that don’t pass through the origin, on the other hand, get mapped to other circles that don’t pass through the origin.

inversion_2
The red circle on the left is sent to the red circle on the right through inversion.

There’s an important special case of this phenomenon: a circle that is met perpendicularly by the circle through which we are inverting gets mapped to itself.

inversion_5
The red circle is perpendicular to the circle of inversion and is thus sent to itself.

We thus have a sort of duality between lines and circles that has been revealed through the process of circle inversion. Lines, when seen in the right light, are simply circles with an infinite radius. We’re going to move on to some applications of circle inversion in just a sec, but, first, a pretty picture of an inverted checkerboard.

checkerboard
Left: A checkerboard. Right: A checkerboard inverted across a circle centered at the middle of the board with radius equal to the side length of one checkerboard square. (from Mathographics by R. Dixon)

The introduction of the method of circle inversion is widely attributed to the Swiss mathematician Jakob Steiner, who wrote a treatise on the matter in 1824. When combined with the more familiar rigid transformations of rotation, translation, and reflection, the decidedly non-rigid transformation of inversion gives rise to inversive geometry, which became a major topic of study in nineteenth geometry. It was perhaps most notably applied by William Thomson (later to become 1st Baron Kelvin, immortalized in the name of a certain temperature scale), at the age of 21, to solve problems in electrostatics. Circle inversion also allows for extremely elegant proofs of classical geometric facts. We end today’s post with an example.

Consider three half-circles, all tangent to one another and centered on the same horizontal line, with two placed inside the third, as follows:

arbelos
An arbelos. (Original by Julio Reis, new version by Rubber Duck, CC BY-SA 3.0)

This figure (or, more precisely, the grey region enclosed by the semicircles) is known as an arbelos, and its first known appearance dates back to The Book of Lemmas by Archimedes. A remarkable fact about the arbelos is that, starting with the smallest of the semicircles in the figure, one can nestle into it an infinite sequence of increasingly small circles, each tangent to the two larger semicircles and the circle appearing before it, thus creating the striking Pappus chain, named for Pappus of Alexandria, who investigated the figure in the 3rd century AD:

pappus
A Pappus chain. (By Pbroks13, CC BY 3.0)

Let us label the circles in the Pappus chain (starting with the smallest semicircle in the arbelos) \mathcal{C}_0, \mathcal{C}_1, \mathcal{C}_2, etc. (So, in the picture above, P_1 is the center of \mathcal{C}_1, P_2 is the center of \mathcal{C}_2, and so on.) Clearly, the size of \mathcal{C}_n decreases as n increases, but it is natural to ask how quickly it decreases. It is also natural to ask how the position of the point P_n changes as n increases. In particular, what is the height of P_n above the base of the figure? It turns out that the answers to these two questions are closely related, a fact discovered by Pappus through a long and elaborate derivation in Euclidean geometry, and which we will derive quickly and elegantly through circle inversion.

Let d_n denote the diameter of the circle \mathcal{C}_n, and let h_n denote the height of the point P_n above the base of the Pappus chain (i.e., the line segment AB). We will prove the remarkable formula:

For all n \in \mathbb{N}h_n = n \cdot d_n.

For concreteness, let us demonstrate the formula for \mathcal{C}_3. The same argument will work for each of the circles in the Pappus chain. As promised, we are going to use circle inversion. Our first task is to find a suitable circle across which to invert our figure. And that circle, it turns out, will be the circle centered at A and perpendicular to \mathcal{C}_3:

pappus_3
We will invert our figure across the red circle.

Now, what happens when we invert our figure? First, consider the two larger semicircles in the arbelos, with diameters AC and AB. The circles of which these form the upper half pass through the center of our circle of inversion and thus, as discussed above, are mapped to straight lines by our inversion. Moreover, since the centers of these circles lie directly to the right of A, a moment’s thought should convince you that they are mapped to vertical lines.

Now, what happens to the circles in the Pappus chain? Well, none of them pass through A, so they will all get mapped to circles. \mathcal{C}_3 is perpendicular to the circle of inversion, so it gets mapped to itself. But, in the original diagram, \mathcal{C}_3 is tangent to the larger semicircles in the arbelos. Since circle inversion preserves tangency, in the inverted diagram, \mathcal{C}_3 is tangent to the two vertical lines that these semicircles are mapped to. And, of course, the same is true of all of the other circles in the Pappus chain. Finally, note that, since the center of \mathcal{C}_0 lies on the base of the figure, which passes through the center of our inversion circle, it also gets mapped to a point on the base of the figure. Putting this all together, we end up with the following striking figure:

pappus_inverted
Pappus chain inversion: before and after. (from “Reflections on the Arbelos” by Harold P. Boas)

The circle with diameter AB gets mapped to the vertical line through B', and the circle with diameter AC gets mapped to the vertical line through C'. Our Pappus chain, meanwhile, is transformed by inversion into an infinite tower of circles, all of the same size, bounded by these vertical lines. Moreover, the circle \mathcal{C}_3 and the point P_3 are left in place by the inversion. It is now straightforward to use this tower to calculate the height h_3 of P_3 in terms of the diameter d_3 of \mathcal{C}_3. To get from P_3 down to the base, we must first pass through half of \mathcal{C}_3, which has a height of \frac{d_3}{2}. We then must pass through the image of \mathcal{C}_2 under the inversion, which has a height of d_3. Then the image of \mathcal{C}_1, which also has a height of d_3. And, finally, the image of the smallest semicircle of the arbelos, which has a height of \frac{d_3}{2}. All together, we get:

h_3 = \frac{d_3}{2} + d_3 + d_3 + \frac{d_3}{2} = 3d_3.

Pretty nice!


For further reading on circle inversion, see Harold P. Boas’ excellent article, “Reflections on the Arbelos.”

Cover image: René Magritte, The false mirror

Advertisements

Playing Games II: The Rules

In an earlier examination of games, we ran into some trouble when Hypergame, a “game” we defined, led to a contradiction. This ended up being a positive development, as the ideas we developed there led us to a (non-contradictory) proof of Cantor’s Theorem, but it indicates that, if we are going to be serious about our study of games, we need to be more careful about our definitions.

So, what is a game? Here’s what Wittgenstein had to say about the question in his famous development of the notion of language games and family resemblances:

66. Consider for example the proceedings that we call “games.” I mean board-games, card-games, ball-games, Olympic games, and so on. What is common to them all? Don’t say: “There must be something common, or they would not be called ‘games’” but look and see whether there is anything common on all. For if you look at them you will not see something that is common to all, but similarities, relationships, and a whole series of them at that. To repeat: don’t think, but look! Look for example at board-games, with their multifarious relationships. Now pass to card-games; here you find many correspondences with the first group, but many common features drop out, and others appear. When we pass next to ball-games, much that is common is retained, but much is lost. Are they all ‘amusing’? Compare chess with noughts and crosses. Or is there always winning and losing, or competition between players? Think of patience. In ball-games there is winning and losing; but when a child throws his ball at the wall and catches it again, this feature has disappeared. Look at the parts played by skill and luck; and at the difference between skill in chess and skill in tennis. Think now of games like ring-a-ring-a-roses; here is the element of amusement, but how many other characteristic features have disappeared! And we can go through the many, many other groups of games in the same way; can see how similarities crop up and disappear. And the result of this examination is: we see a complicated network of similarities overlapping and crisscrossing: sometimes overall similarities, sometimes similarities of detail.

-Ludwig Wittgenstein, Philosophical Investigations

This is perhaps the correct approach to take when studying the notion of “game” as commonly used in the course of life, but that is not what we are doing here. We want to isolate a concrete mathematical notion of game amenable to rigorous analysis, and for this purpose we must be precise. No doubt there will be things that many people consider games that will be left out of our analysis, and perhaps some of our games would not be recognized as such out in the wild, but this is beside the point.


To narrow the scope of our investigation, let us say more about what type of games we are interested in. First, for simplicity, we are interested in two-player games, in which the players play moves one at a time. We are also (for now, at least) interested in games that necessarily end in a finite number of moves (though, for any particular game, there may be no a priori finite upper bound on the number of moves in a run of that game). Finally, we will be interested in games for which the game must end in victory for one of the players. Our theory can easily be adapted to deal with ties, but this will just unnecessarily complicate things.

One way to think about a move in a game is as a transformation of the current game into a different one. Consider chess (and, just so it satisfies our constraints, suppose that a classical “tie” counts as a win for black). A typical game of chess starts with all of the pieces in their traditional spots (for simplicity, let’s be agnostic about which color moves first). However, we can consider a slightly different game, called chess_1, that has all of the same rules as chess except that white’s king pawn starts on e4, two squares up from its traditional square. This is a perfectly fine game, and white’s opening move of e2-e4 can be seen as a transformation of chess into chess_1.

With this idea in mind, it makes sense to think of a game as two sets of other games: one set is the set of games that one player can transform the game into by making a move, and the other set is the set of games that the other player can transform the game into by making a move. We will refer to our players as Left (L) and Right (R), so a game G can be thought of as a pair (L | R), where L and R are sets of games. This in fact leads to our first rule of games:

First Rule of Games: If L and R are sets of games, then G = (L | R) is a game.

Depending on one’s background assumptions, this rule does not necessarily rule out games with infinite runs, or pathological games like Hypergame. We therefore explicitly forbid this:

Second Rule of Games: There is no infinite sequence \langle G_i = (L_i | R_i) \mid i \in \mathbb{N} \rangle of games such that, for all i \in \mathbb{N}, G_{i+1} \in L_i \cup R_i.

And that’s it! Now we know what games are…

The skeptics among you may think this is not enough. It may not even be immediately evident that there are any games at all! But there are. Note that the empty set is certainly a set of games (all of its elements are certainly games). Therefore, G = (\emptyset | \emptyset) is a game. It is a boring game in which neither player can make any moves, but it is a game nonetheless. We can now begin to construct more interesting games, like (\{(\emptyset | \emptyset), (\{(\emptyset | \emptyset)\} | \{(\emptyset | \emptyset)\})\} | \{(\emptyset | \emptyset)\}), or chess.

There’s one crucial aspect of games we haven’t dealt with yet: who wins? We deal with this in the obvious way. Let us suppose that, in an actual run of a game, the players must alternate moves (though a game by itself does not specify who makes the first move). During a run of a game, a player loses if it is their turn to move and they have no moves to make, e.g., the game has reached a position (L | R), it is R’s turn to move, and R = \emptyset.


Let us look now at a simple, illustrative example of a game: Nim. A game of Nim starts with a finite number of piles, each containing a finite number of objects. On a player’s move, they choose one of these piles and remove any non-zero number of objects from that pile. The loser is the first player who is unable to remove any objects.

Let us denote games of Nim by finite arrays of numbers, arranged in increasing order. For example, the game of Nim starting with four piles of, respectively, 1,3,5, and 7 objects will be represented by [1,3,5,7]. The trivial game of Nim, consisting of zero piles, and in which the first player to move automatically loses, will be represented by [0].

Let us see that Nim falls into the game framework that we developed above. The trivial game of Nim is clearly equivalent to the trivial game, (\emptyset | \emptyset). We can now identify other game of Nim as members of our framework by induction on, say, the total number of objects involved in the game at the start. Thus, suppose we are trying to identify [1,3,5,7] as a game and we have already succeeded in identifying all instances of Nim with fewer than 16 objects. What instances of Nim can [1,3,5,7] be transformed into by a single move? Well, a player can remove all of the objects from a pile, resulting in [1,3,5], [1,3,7], [1,5,7], or [3,5,7]. Alternatively, they can remove parts of the 3, 5, or 7 piles, resulting in things like [1,3,4,5], [1,1,5,7], etc. All of these Nim instances, clearly, have fewer than 16 objects, so, if we let X denote the set of Nims that can result after one move of [1,3,5,7], then we have shown that X is a set of games, in the sense of our formal framework. We can therefore define a game (X | X), which is clearly equivalent to [1,3,5,7].

In the next post, we’ll look at strategies for games. When can we say for sure which player wins a game? How can we derive winning strategies for games? And what does it all mean?


Cover image: Paul Cézanne, “The Card Players”

Playing Games I: Setting Up the Pieces

Life is more fun if you play games.

-Roald Dahl

Combinatory play seems to be the essential feature in productive thought.

-Albert Einstein

Observant readers will have noted the multiple occasions on which games have shown up in our posts here at Point at Infinity. We have examined the paradoxes of Hypergame in pursuit of a proof of Cantor’s Theorem. We have callously decided the fates of prisoners by playing games with hat colors. We have seen mysterious characters engage in a variant of Nim in Last Year at Marienbad. Some may even accuse us of playing a few games ourselves.

There are reasons for this. Games are fun, for one. And, more to the point, games often provide a useful lens through which to view more “serious” topics. So, over the next few weeks, we are going to be taking a deeper look at all kinds of games and the light they can shed on the infinite. We will discover a winning strategy for Marienbad (among other games). We will investigate Conway’s surreal numbers (for real this time) in the context of game values. We will consider the profound and often surprising role infinite games have played in modern set theory, in particular with regard to questions around the strange and counter-intuitive Axiom of Determinacy. We may even venture into muddier philosophical waters to look at Wittgenstein’s language games or James Carse’s ideas about finite and infinite games.

It will be fun, and I hope you will join us. For today, though, just enjoy this video of an instance of Conway’s Game of Life, implemented inside another instance of Conway’s Game of Life:


Cover image: Still from The Seventh Seal.

Tree decomposition in Budapest

I am spending this week in Budapest in order to participate in the 6th European Set Theory Conference, and I want to take the occasion to present a nice little result of Paul Erdős, one of the great mathematicians of the twentieth century, who was born and spent the first decades of his life in Budapest before spending most of his adult life traveling the world, living and working with a vast network of mathematical collaborators.

Erdős contributed to a huge array of mathematical disciplines, including set theory, my own primary field of specialization and the field from which today’s result is drawn. Like most other Hungarians working in set theory, Erdős’s results in the field have a distinctly combinatorial flavor.

In order to state and prove the result, we need to review a bit of terminology. Recall first that the Continuum Hypothesis is the assertion that the size of the set of all real numbers is \aleph_1, i.e., that there are no sizes of infinity strictly between the sizes of the set of natural numbers and the set of real numbers. As we have discussed, the Continuum Hypothesis is independent of the axioms of set theory.

The Continuum Hypothesis can be shown to be equivalent to a surprisingly diverse collection of other mathematical statements. We will be concerned with one of these statements today, coming from the field of graph theory. If you need a brief review of terminology regarding graphs, visit this previous post.

If Z is a set, then we say that the complete graph on Z is the graph whose vertex set is Z and which contains all possible edges between distinct elements of Z.

800px-Complete_graph_K7.svg
The complete graph on 7 vertices.

If G = (V, E) is a graph and k \geq 3 is a natural number, then a k-cycle in G is a sequence of k distinct elements of V, (v_1, v_2, \ldots, v_k), such that \{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_{k-1}, v_k\}, \{v_k, v_1\} are all in E.

Graph_with_Chordless_and_Chorded_Cycles.svg
In this graph, both (A,B,C,D,E,F) and (G,H,I,J,K,L) form 6-cycles. (Image by Blacklemon67)

A graph without any cycles is called a tree. (Note that many sources require a tree to be connected as well as cycle-free and call a cycle-free graph a forest. This leads to the pleasing definition, “A tree is a connected forest.” We will ignore this distinction here, though.)

A complete graph is very far from being a tree: every possible cycle is there. We will be interested in the question: `How many trees does it take to make a complete graph?’

Let us be more precise. An edge-decomposition of a graph G = (V,E) is a disjoint partition of E, i.e., a collection of sets \{E_i \mid i \in I\}, indexed by a set I, such that E_i \cap E_j = \emptyset for distinct elements i,j \in I and \bigcup_{i \in I} E_i = E. An edge-decomposition thus decomposes the graph G = (V,E) into graphs G_i = (V, E_i) for i \in I.

Walecki
An edge-decomposition of the complete graph on 8 vertices into 4 pieces, indicated by black, blue, green, and red edges, respectively.

We will be interested in the number of pieces required for an edge-decomposition of a complete graph into trees. In the above image, we provide an edge-decomposition of the complete graph on 8 vertices into 4 trees (in fact, into 4 Hamiltonian paths). For an infinite complete graph, though, no finite number of pieces will ever suffice. The question we will be interested in today is the number of pieces necessary to provide an edge-decomposition of the complete graph on the real numbers, \mathbb{R}, into trees.

Theorem. (Erdős-Kakutani and Erdős-Hajnal) The following statements are equivalent:

  1. The Continuum Hypothesis
  2. There is an edge-decomposition of the complete graph on \mathbb{R} into countably many trees.

Proof. Suppose first that the Continuum Hypothesis holds. Then \mathbb{R} can be enumerated as \langle r_\alpha \mid \alpha < \omega_1 \rangle. For all \beta < \omega_1, we know that \beta is countable, so we can fix a function e_\beta:\beta \rightarrow \mathbb{N} that is one-to-one, i.e., if \alpha_0 and \alpha_1 are distinct ordinals less than \beta, then e_\beta(\alpha_0) \neq e_\beta(\alpha_1).

We now specify an edge-decomposition of the complete graph on \mathbb{R} into countably many graphs. The edge-sets of these graphs will be denoted by E_n for n \in \mathbb{N}. To specify this decomposition, it suffices to specify, for each pair \alpha < \beta of countable ordinals, a natural number n_{\alpha, \beta} such that \{r_\alpha, r_\beta\} \in E_{n_{\alpha, \beta}}. And we have a natural way of doing this: simply let n_{\alpha, \beta} = e_\beta(\alpha).

We claim that each E_n is cycle-free. To prove this, suppose for sake of contradiction that k,n \in \mathbb{N} and E_n has a k-cycle. This means there are distinct ordinals \alpha_1, \alpha_2, \ldots, \alpha_k such that \{r_{\alpha_1}, r_{\alpha_2}\}, \{r_{\alpha_2}, r_{\alpha_3}\}, \ldots, \{r_{\alpha_{k-1}}, r_{\alpha_k}\}, \{r_{\alpha_k}, r_{\alpha_1}\} are all in E_n.

Now fix \ell \leq k such that \alpha_\ell is the maximum of the set \{\alpha_1, \ldots, \alpha_k\}. Without loss of generality, let us suppose that 1 < \ell < k (if this is not the case, simply shift the numbering of the cycle). Then we have \{r_{\alpha_{\ell - 1}}, r_{\alpha_\ell}\}, \{r_{\alpha_\ell}, r_{\alpha_{\ell + 1}}\} \in E_n. Since \alpha_\ell > \alpha_{\ell - 1}, \alpha_{\ell + 1}, our definition of E_n implies that e_{\alpha_\ell}(\alpha_{\ell - 1}) = n = e_{\alpha_\ell}(\alpha_{\ell + 1}), contradicting the assumption that e_{\alpha_\ell} is one-to-one and finishing the proof of the implication  1. \Rightarrow 2.

To prove that 2. implies 1., we will actually prove that the negation of 1. implies the negation of 2.. So, suppose that the Continuum Hypothesis fails, i.e., |\mathbb{R}| \geq \aleph_2. Let \langle r_\alpha \mid \alpha < |\mathbb{R}|\rangle be an enumeration of \mathbb{R}, and suppose \langle E_n \mid n \in \mathbb{N} \rangle is an edge-decomposition of the complete graph on \mathbb{R}. This means that, for all pairs of ordinals \alpha < \beta smaller than |\mathbb{R}|, there is a unique natural number n_{\alpha, \beta} such that \{r_\alpha, r_\beta\} \in E_{n_{\alpha, \beta}}. We will prove that there is a natural number n such that E_n contains a 4-cycle.

Let X be the set of ordinals that are bigger than \omega_1 but less than |\mathbb{R}|. Clearly, |X| = |\mathbb{R}| \geq \aleph_2. For each \beta \in X and each n < \omega, let A_{\beta, n} be the set of ordinals \alpha less than \omega_1 such that n_{\alpha, \beta} = n. Then \bigcup_{n \in \mathbb{N}} A_{\beta, n} = \omega_1, so, since \mathbb{N} is countable and \omega_1 is uncountable, there must be some natural number n such that A_{\beta, n} is uncountable. Let n_\beta be such an n.

For n \in \mathbb{N}, let X_n = \{\beta \in X \mid n_\beta = n\}. Then \bigcup_{n \in \mathbb{N}}X_n = X. Since |X| \geq \aleph_2, this means that there must be some natural number n^* such that |X_{n^*}| \geq \aleph_2.

Now, for each \beta \in X_{n^*}, let \alpha_{\beta, 0} and \alpha_{\beta, 1} be the least two elements of A_{\beta, n^*}. Since there are only \aleph_1 different choices for \alpha_{\beta, 0} and \alpha_{\beta, 1}, and since |X_{n^*}| \geq \aleph_2, it follows that we can find \beta_0 < \beta_1 in X_{n^*} and \alpha_0 < \alpha_1 < \omega_1 such that \alpha_{\beta_0, 0} = \alpha_0 = \alpha_{\beta_1, 0} and \alpha_{\beta_0, 1} = \alpha_1 = \alpha_{\beta_1, 1}. It follows that \{r_{\alpha_0}, r_{\beta_0}\}, \{r_{\beta_0}, r_{\alpha_1}\}, \{r_{\alpha_1}, r_{\beta_1}\}, \{r_{\beta_1}, r_{\alpha_0}\} \in E_{n^*}. In other words, (r_{\alpha_0}, r_{\beta_1}, r_{\alpha_1}, r_{\beta_1}) forms a 4-cycle in E_{n^*}. This completes the proof of the Theorem.

Notes: The proofs given here do not exactly match those given by Erdős and collaborators; rather, they are simplifications made possible by the increased sophistication in dealing with ordinals and cardinals that has been developed by set theorists over the previous decades. The implication from 1. to 2. is due to Erdős and Kakutani and can be found in this paper from 1943. The implication from 2. to 1. was stated as an unsolved problem in the Erdős-Kakutani paper. It was proven (in a much more general context) in a landmark paper by Erdős and Hajnal from 1966.

Marienbad

Trying to make sense of it doesn’t make sense.

-Last Year at Marienbad

A spa town in the Czech Republic, Marienbad was a favored vacation spot of European royalty and celebrities during the 19th and early 20th centuries. Some mathematicians came, too: Karl Weierstrass, Gösta Mittag-Leffler, and Sofia Kovalevskaya were all drawn by the combination of the restful atmosphere and sparkling social life that could be found at the spa.

Though its golden era ended in the early 20th century, Marienbad remained popular between the world wars. Among the visitors during that time was a young Kurt Gödel. According to some accounts, Gödel’s interest in the sciences was kindled by a teenage visit to Marienbad, during which he and his brother studied Goethe’s philosophical theory of color and found it lacking in comparison to Newton’s more strictly scientific account.

After the war we were in Marienbad quite often with my brother, and I remember that we once read Chamberlain’s biography of Goethe together. At several points, he took a special interest in Goethe’s theory of color, which also served as a source of his interest in the natural sciences. In any case, he preferred Newton’s analysis of the color spectrum to Goethe’s.

-Rudolf Gödel

Goethe himself was a frequent visitor to Marienbad. During an 1823 trip, the 73-year-old Goethe became infatuated with the 18-year-old Baroness Ulrike von Levetzow. The pain caused by her rejection of his marriage proposal led him to write the famous Marienbad Elegy (updated in 1999 by the great W.G. Sebald).


…who dance, stroll up and down, and swim in the pool, as if this were a summer resort like Los Teques or Marienbad.

-Adolfo Bioy Casares, The Invention of Morel

In 1961, Last Year at Marienbad was released. Directed by Alain Resnais and written by Alain Robbe-Grillet, the film is as beautiful as it is inexplicable. On its face, the film is set at a resort hotel; an unnamed man (‘X’) becomes infatuated with an unnamed woman (‘A’) and attempts to convince her that they had an affair the previous year. The film unfolds in combinatorial play, with narration and scenes repeated in ever-evolving and bewildering variation.

A popular theory is that Last Year at Marienbad is actually an adaptation of Adolfo Bioy Casares’ The Invention of Morel, a novel of which our friend Jorge Luis Borges wrote, “To classify it as perfect is neither an imprecision nor a hyperbole.” I will not say much about this, so as not to spoil the book (you should go read it right now), but will only mention that Morel was, in a way, an homage to Louise Brooks, a Hollywood actress with whom Casares was somewhat obsessed and whose performance in Pandora’s Box provided a model for Delphine Seyrig’s performance as ‘A’ in Marienbad. The idea that there is a direct line from Casares and Brooks to the main characters in Morel to ‘X’ and ‘A’ in Marienbad, and that the obscurities of both novel and film are at heart simply odes to the power of cinema is an appealing one.

This theory about the connection between Marienbad and Morel was never acknowledged by the filmmakers (some say that the source text for the film is not Casares’ novel, but rather Wittgenstein’s Philosophical Investigations). Perhaps its fullest explication is given by this article in Senses of Cinema, in which the only sources given by the author are the dust jacket of a different Casares work and an Encyclopedia Britannica article which has since been removed from the online archives. Regardless of the theory’s truth, though, when one views the film through the lens of Morel, it comes tantalizingly close to making sense; the characters of the film lose their agency, consigned to repeating their roles ad infinitum.

At first sight, it seemed impossible to lose your way. At first sight…

Last Year at Marienbad


The third main character in Marienbad is ‘M’, a man who may or may not be the husband of ‘A’. Throughout the film, we see ‘M’ playing a version of the mathematical game of Nim with ‘X’.

This version of Nim became known by the name “Marienbad” and was a brief craze in certain circles. It even got written about in Time:

Last week the Marienbad game was popping up at cocktail parties (with colored toothpicks), on commuter trains (with paper matches), in offices (paper clips) and in bars (with swizzle sticks). Only two can play, but any number can kibitz — and everyone, it seems, has a system for duplicating “X’s” talent for winning.

-“Games: Two on a Match,” Time, Mar. 23, 1962

The game is a theoretical win for the second player, although, as it is unlikely that a player will stumble upon the winning strategy by accident, ‘X’ is able to win even as the first player. We will return to general winning strategies for Nim and other games in later posts.

-The one who starts, wins.

-You must take an even number.

-You must take the smallest odd number.

-It’s a logarithmic series.

-You must switch rows as you go.

-And divide by three.

-Seven times seven is forty-nine.

-kibitzers in Last Year at Marienbad


I leave you now with Nick Cave’s exquisite “Girl in Amber.” Another secret adaptation of The Invention of Morel? Possible…

Cantor and the Absolute (Universal Structures IV)

As long-time readers of this blog will know, the mathematical discipline of set theory, and with it the modern mathematical investigation of infinity, was almost single-handedly initiated by Georg Cantor, a mathematical giant of the late 19th century. Among the factors contributing to Cantor’s revolutionary achievements was his willingness to work with actual infinities, to consider infinite sets as completed entities that can be manipulated as mathematical objects in their own right. Two of the foundational ideas made possible by Cantor’s acceptance of actual infinity are:

  • the existence of multiple infinite cardinalities;
  • the concept of transfinite ordinal numbers.

It was realized quite early in the development of set theory, though, that a naïve conception of infinity and sets would lead to paradoxes. (Indeed, the existence of these paradoxes is one of the reasons for the reluctance of mathematicians to accept actual infinities and provided fodder for Cantor’s mathematical enemies.) Two of the most consequential of these paradoxes are Russell’s Paradox and the Burali-Forti Paradox.

Russell’s Paradox: Essentially, Russell’s Paradox asserts that there can be no set of all sets. For suppose that such a set exists (call it S). Then, by any reasonable formulation of set theory, we could form the set of all sets that do not contain themselves. Formally, this set, which we will call R, would be \{x \in S \mid x \not\in x\}. Now comes the crucial question: can R be a member of itself? Either answer leads to contradiction: if R \in R, then  R \not\in R, and if R \not\in R, then R \in R. Thus, there can be no set of all sets.

Burali-Forti Paradox: The Burali-Forti Paradox goes even further than Russell’s Paradox: not only can the set of all sets not exist, but the set of all ordinal numbers cannot exist either. For suppose that T is the set of all ordinal numbers. Recall that an ordinal number is, essentially, the order type of a well-ordered set. Recall also that the class of ordinal numbers is well-ordered: any set of ordinals has a least element. But this implies that T itself is a well-ordered set, but, since T contains all of the ordinals, its order type must be larger than all the ordinals numbers. This is a contradiction.

The collection of all sets and the collection of all ordinal numbers are therefore not sets. But it seems that we are nonetheless able to conceive of them, to reason about them. They seem to have some form of reality. So what are they?

The standard response in modern set theory is simply to say that these collections are what is known as proper classes. They are collections that are “too large” to be sets, that are “too large” to be manipulated in ways that sets are manipulated. This has served us well, to this point banishing paradox from the subject. Cantor’s response was similar but was imbued with something more. Consider this excerpt from a letter sent by Cantor to the English mathematician Grace Chisholm Young:

I have never assumed a “Genus Supremum” of the actual infinite. Quite on the contrary I have proved that there can be no such “Genus Supremum” of the actual infinite. What lies beyond all that is finite and transfinite is not a “Genus”; it is the unique, completely individual unity, in which everything is, which comprises everything, the ‘Absolute’, for human intelligence unfathomable, also that not subject to mathematics, unmeasurable, the “ens simplicissimum”, the “Actus purissimus”, which is by many called “God”.

For Cantor, infinity comes in not two but three varieties: the potential infinity of limits, sequences, and series; the transfinite infinity of the infinite cardinal and ordinal numbers; and the absolute infinity, which transcends mathematics and human comprehension, and which is identified with God.


Much has been made of the possibility that Georg Cantor’s family had Jewish roots and that Cantor’s conceptions of infinity and mathematical philosophy were influenced by Jewish mysticism and Kabbalah. On the former issue we will just say that there is evidence, from correspondence and genealogical records, pointing in both directions. On the latter, we will simply note that Cantor’s choice to denote infinite cardinals was ‘aleph’ (ℵ), the first letter of the Hebrew alphabet and a letter of importance in Kabbalah as the opening of the words Ein Sof (infinity, roughly) and Elohim (a name for God).

Also, here’s a little-known fact: the symbol that Cantor used to denote the class of all cardinal numbers (too big to be a set, of course) is ‘tav’ (ת), the last letter in the Hebrew alphabet and the representative, in Kabbalah, of perfection, of the synthesis of all that exists.


Another fascinating intersection between Cantor’s set theory and theology involves the Catholic Church. Long-time readers may recall that, the last time the Church appeared in our story, the mathematician involved was Galileo, and the relationship between the two could be described, at the risk of understatement, as antagonistic.

250 years later, the relationship between the Catholic Church and the day’s leading provocateur of the infinite would turn out decidedly differently. This was due in large part to Pope Leo XIII, who assumed the position in 1878 and, the following year, issued the encyclical Aeterni Patris. The encyclical called for the revival of the Scholastic philosophy of Thomas Aquinas. It sought to modernize the Church and to increase its interest and participation in scientific inquiry.

For, the investigation of facts and the contemplation of nature is not alone sufficient for their profitable exercise and advance; but, when facts have been established, it is necessary to rise and apply ourselves to the study of the nature of corporeal things, to inquire into the laws which govern them and the principles whence their order and varied unity and mutual attraction in diversity arise. To such investigations it is wonderful what force and light and aid the Scholastic philosophy, if judiciously taught, would bring.

-Leo XIII, Aeterni Patris

Neo-Scholastic scholars thus gained prominence in the Church, and the Church began engaging more with the cutting-edge scientific work of the day. Cantor’s brand new ideas about infinity were naturally of interest. Cantor, with religious tendencies of his own and upset by the skeptical or hostile reactions of most of his fellow mathematicians to his work, was himself eager to explain his ideas to the Church and ensure that they were properly understood. And thus began the remarkable correspondence between Cantor and the leading Catholic scholars and clergy of the day.

In any case it is necessary to undertake a serious examination of the latter question concerning the truth of the Transfinitum, for were I correct in asserting its truth in terms of the possibility of the Transfinitum, then there would be (without doubt) a certain danger of religious error for those of the opposite opinion, since: error circa creaturas redundat in falsam de Deo scientiam.

-letter from Cantor to Jeiler von Pfingsten, 1888

One of the issues that arose in Cantor’s correspondence with the Church involved the fundamental existence of Cantor’s transfinite numbers. (Note that I am in no way a theological scholar, so this account is probably grossly oversimplified.) A number of Catholic intellectuals were hesitant to accept the objective existence of Cantor’s transfinite numbers on the grounds that, as God is often theologically identified with the infinite, the acceptance of the existence of transfinite numbers would lead inevitably to Pantheism, a doctrine which was not only implicity but explicitly (by Pius IX in 1861) condemned by the Church. Cantor responded by emphasizing his distinction between the absolute infinity and the transfinite infinity, between an “Infinitum aeternum increatum sive Absolutum” and an “Infinitum creatum sive Transfinitum.” The former is reserved for God; the latter manifests itself in mathematics and in the universe.

The neo-Scholastic thinkers were largely convinced by Cantor’s distinction and came to accept many of his ideas about infinity. Cantor himself took great pride in this achievement, even going so far as, in a moment of mathematical self-doubt engendered by his inability to solve the Continuum Problem, to express the following remarkable sentiment in an 1894 letter to the French mathematician Charles Hermite:

Now I only thank God, the all-wise and all-good, that he always denied me the fulfillment of this wish [for a position at University in either Göttingen or Berlin], for He thereby constrained me, through a deeper penetration into theology, to serve Him and His Holy Roman Catholic Church better than I would have been able to with my probably weak mathematical powers through an exclusive occupation with mathematics.


P.S.: Cantorian set theory recently made a surprise appearance in the New York Times crossword puzzle:

00001

Rex Parker was not happy!


Acknowledgement: The material about Cantor’s correspondence with the Catholic Church came largely from Joseph W. Dauben’s excellent paper, “Georg Cantor and Pope Leo XIII: Mathematics, Theology, and the Infinite.”

Cover Image: Harald Sohlberg, “Winter Night in the Mountains,” 1901. Nasjonalgalleriet, Oslo.

Surreal Numbers (Universal Structures III)

“You get surreal numbers by playing games. I used to feel guilty in Cambridge that I spent all day playing games, while I was supposed to be doing mathematics. Then, when I discovered surreal numbers, I realized that playing games IS mathematics.”

-John Horton Conway

vvv_no_1
First issue of VVV, published by David Hare in collaboration with Marcel Duchamp, André Breton, and Max Ernst
manrayjuliuscaesar
“Julius Caesar,” by Man Ray
cornell
“Untitled,” by Joseph Cornell
las_meninas_dali
“Las Meninas,” by Salvador Dali, after Diego Velasquez
de_chirico_evil_genius
“The Evil Genius of a King,” by Giorgio de Chirico
tanguy_imaginary_numbers
“Imaginary Numbers,” by Yves Tanguy
miro_untitled
“Untitled,” by Joan Miró
escher_red-ants
“Möbius Strip II,” by M.C. Escher
brauner_surrealist
“The Surrealist,” by Victor Brauner
magritte_pleasure_principle
“The Pleasure Principle (Portrait of Edward James),” by René Magritte