Cantor v. Crank

No one shall expel us from the paradise that Cantor has created for us.

-David Hilbert

To the extent that a mathematical theorem can be considered controversial, Cantor’s Theorem has historically been quite a controversial statement. The theorem, which, we remind you, states that, for any set A, the power set \mathcal{P}(A), which consists of all subsets of A, is strictly larger than A (or, in a commonly cited special case, the set of all real numbers, \mathbb{R}, is strictly larger than the set of all natural numbers, \mathbb{N}), was attacked by a number of Cantor’s illustrious contemporaries, among them Kronecker and Poincaré, who objected to Cantor’s manipulation of infinite sets as mathematical objects in their own right.

Cantor’s work also had prominent defenders, though, most notably David Hilbert, whose quote in the header of this post has become among the most iconic proclamations in modern mathematics. As mathematicians settled into the twentieth century, Cantor’s Theorem and the field of set theory that it helped establish became widely accepted in the community. Today, it is safe to say that Cantor’s Theorem is uncontroversial among the vast majority of mathematicians. Resistance to the theorem or to its extrapolations has not died out, though; it remains present in certain pockets of mathematics, such as ultrafinitism, in some philosophy departments, and among amateur mathematicians. Today, we will look at an example from this last category.


In 1974, the Transactions of the Wisconsin Academy of Sciences, Arts, and Letters published an article by engineer William Dilworth, “A Correction in Set Theory,” in which Dilworth claims to “present an analysis, made possible by modern semantics, of a central fallacy in Cantor’s theory.” The paper is not good, and it should not have been published, but before we jump to excoriate the editors of the journal, we should note a historical fact about science in America. In the 1800s, professors in public colleges and universities, especially in the midwestern and western states, were often academically isolated, not really able to talk to any colleagues at their institutions about their work. State-run academies, such as the Wisconsin Academy of Sciences, Arts, and Letters, sprung up to help these academics communicate with one another. In the twentieth century, though, more specialized national and international academic associations were formed, and more focused academic journals proliferated, and communication became progressively easier, so these state academies became less and less relevant. Certainly by 1974, the Transactions of the Wisconsin Academy of Sciences, Arts, and Letters was not attracting many high-quality submissions (at least in mathematics; I don’t presume to judge the quality of publications in agricultural science or literary criticism), and perhaps published nearly everything it received as a result. The journal had outlived its purpose, but it hung on until 2001, when its final issue was released.

Let us turn now to Dilworth’s paper. The impetus for the work appears to be Dilworth’s displeasure with the Banach-Tarski Paradox, which is a theorem stating roughly that one may take a three-dimensional ball, decompose it into finitely many pieces, and move these pieces around in space so that they form two complete balls, each of the same size as the original ball. On its face, this seems absurd. We have seemingly doubled the amount of stuff we have! Of course, closer inspection dispels the aura of paradox here. The pieces needed to perform the construction are infinitely complicated and non-definable and certainly could not be used in some brilliant gold-proliferating get-rich-quick scheme in the real world. And, when we think about it, there are just as many points in two balls as there are in one (continuum-many, in both cases), so maybe this theorem isn’t so surprising after all?

Dilworth was apparently not convinced, though, He found the Banach-Tarski Paradox to be clearly wrong, and since the result depended on the techniques of the then-young field of set theory, and since set theory was born out of Cantor’s Theorem, there must be something wrong with Cantor’s Theorem.

The paper makes for alternately entertaining and maddening reading. His reasoning is often muddled, but Dilworth does sometimes have a way with words and, though he perhaps goes a bit too far in this direction, the writing has character and flair in a way that I sometimes wish more technical mathematical writing did. For example, when describing Cantor’s diagonal argument and what he sees as its undeserved acceptance by the mathematical community, Dilworth writes,

Historically and up to this date, he has won. The horrendous “alephs” of his endless infinities thunder through the evening skies of academe “with hooves of steel”, as the songwriter put it.

There is a decided lack of Johnny Cash references in today’s mathematical writing. (And yes, I know that Cash’s version of this song was released in 1979 and therefore can’t be the version referenced in this 1974 paper…)

The paper also ends memorably, with an assertion of a conspiracy among mathematicians to cover up the fallacies in Cantor’s proof, followed by a final, simple, cryptic directive:

Remember the spheres.

In substance, though, Dilworth’s writing is at first incomprehensible, and when its meaning has been at least partially uncovered, his error is immediately evident. In attempting to show that the size of the set of all real numbers is exactly the same as the size of the set of all natural numbers, he is not in fact considering all real numbers, but just those whose decimal representations only have finitely many digits (or, in a different reading of his argument, only those whose decimal representations end in endlessly repeating patterns; or, in a still different reading, only those which are definable by a finite sentence). And he is correct in the sense that this subset of the real numbers does have the same size as the set of natural numbers. But by restricting his vision to this subset, he is excluding the vast majority of real numbers.

This is a mistake that could have been pointed out to Dilworth by any mathematician or any sufficiently advanced student of mathematics. And it apparently was pointed out to him on multiple occasions, for Dilworth includes accounts of his interactions with mathematics professors in the paper. For example, in one passage, Dilworth acknowledges the obvious objection to his argument, namely that he is not considering all of the real numbers, but dismisses it out of hand without argument. In another passage, when discussing Cantor’s claim that, if one tries to pair the real numbers off in a one-to-one fashion with the integers, the integers will necessarily “become exhausted” before the process is complete, he relates the following incident:

“Yes sir,” the head of the mathematics department of a Univ. of Illinois section said matter-of-factly to my face, “The integers will become exhausted.” Believe it or not, Georg Cantor made these remarkable claims stick with the world’s mathematicians of his time, and they stick unto this day. The effects of the Cantorian grip on the professional mind have to be experienced to be believed.

It is difficult to judge how much of this disconnect between Dilworth and the professional mathematicians is due to Dilworth’s own stubbornness and unwillingness to admit his error and how much of it is due to the mathematicians’ inability to clearly articulate somewhat complex mathematical ideas to a non-mathematician (something that, as I have discovered through writing this blog, is often quite difficult to do). In any event, something went wrong in this case, which is unfortunate. It is encouraging, and all too rare, to see non-mathematicians become enthusiastic about and engaged in mathematics, so it is always a shame to see them go astray.

Let us take a slight detour here to make an observation about education and training. I don’t think it will be particularly controversial to say that the primary aim of mathematics education, particularly at the graduate level, is not the learning of calculation techniques or the statements and proofs of theorems (though this will of course come), but rather a training in the actual practice of doing mathematics, of thinking mathematically, and of being able to communicate mathematical ideas with other mathematicians. In my experience, competence in this practice of mathematics is much harder to come by than mathematical knowledge, perhaps almost impossible to come by without a dedicated mentor, a role typically filled by one’s PhD advisor. It is precisely this conversance with mathematical practice that, at least in modern times, seems to be almost a prerequisite to making any sort of substantial contribution to mathematical knowledge, and it seems to be precisely what Dilworth was lacking.


There is a common and mildly insulting label that often gets applied to people such as William Dilworth: crank. In 1992, Underwood Dudley, then a professor at DePauw University in Indiana, published a comprehensive and encyclopedic compendium of crankery, Mathematical Cranks. In the introduction to the book, Dudley clarifies what he means by the word.

They’re not nuts. Well, a few are, but most aren’t. A lot of them are amateurs — mathematical amateurs who don’t know much mathematics but like to work on mathematical problems. Sometimes, when you can’t convince them that they haven’t done what they thought they’ve done, they turn into cranks, but cranks aren’t nuts, they’re just people who have a blind spot in one direction.

One chapter of Dudley’s book is devoted to cranks attacking Cantor’s Theorem. We meet a person who found five separate mistakes in Cantor’s proof, a person who held that Cantor’s conception of “number” was incorrect, and people who dispute the existence of mathematical infinity. At the end of the chapter, we meet William Dilworth. After running through the problems with Dilworth’s paper, Dudley concludes the chapter with the following sentences (Dudley does not identify the state responsible for publishing Dilworth’s paper, and also refers to Dilworth as W.D.):

His article reads as if it is by someone convinced, whose mind is not going to be changed by anything. It is by, in two words, a crank, and it is no credit to the state of X.


Dilworth was not happy about his inclusion in Mathematical Cranks. As an engineer, an academic outsider, it was hard enough for him to publish his ideas and to be taken seriously by the mathematical establishment. After being publicly labeled a crank, it would become nearly impossible. And so, in 1995, he sued Underwood Dudley for defamation.

The suit was dismissed by a district judge for “failure to state a claim.” More precisely, the judge held that the word “crank” is incapable of being defamatory; it is mere “rhetorical hyperbole.” Dilworth appealed this ruling, and the case ended up in the Seventh Circuit Court of Appeals, before none other than Judge Richard Posner, the “most cited legal scholar of the 20th century” and one of the most prominent modern American judges not to have been appointed to the Supreme Court. And if this whole story gave us nothing else, it would have been worth it solely for Posner’s remarkable decision.

Posner begins by noting that it is crucial for Dilworth’s claim to establish that Dudley acted with “actual malice” in calling Dilworth a crank:

The allegation of actual malice is necessary because the plaintiff is a public figure. Not, it is true, a “public figure” in the lay sense of the term. Dilworth is an obscure engineer. But anyone who publishes becomes a public figure in the world bounded by the readership of the literature to which he has contributed.

(It is good to know that I am, at least legally speaking, a public figure!)

Posner then goes on to consider the district judge’s ruling that “crank” cannot be defamatory because it is mere “rhetorical hyperbole.” He begins by considering past cases that deal with precisely this issue.

Among the terms or epithets that have been held (all in the cases we’ve cited) to be incapable of defaming because they are mere hyperbole rather than falsifiable assertions of discreditable fact are “scab,” “traitor,” “amoral,” “scam,” “fake,” “phony,” “a snake-oil job,” “he’s dealing with half a deck,” and “lazy, stupid, crap-shooting, chicken-stealing idiot.”

These terms, Posner asserts, have both literal and figurative usages. Figurative usages cannot be defamatory; they are mere “rhetorical hyperbole.” Literal usages, on the other hand, that make real factual claims, can be defamatory if false. Decisions on the defamatory nature of these terms, therefore, hinge on a judgment as to whether they are intended literally or figuratively. Posner then goes on to consider whether “crank” falls into this category.

“Crank” might seem the same type of word, but we think not. A crank is a person inexplicably obsessed by an obviously unsound idea — a person with a bee in his bonnet. To call a person a crank is to say that because of some quirk of temperament he is wasting his time pursuing a line of thought that is plainly without merit or promise. An example of a math crank would be someone who spent his time trying to square the circle. To call a person a crank is basically just a colorful and insulting way of expressing disagreement with his master idea, and it therefore belongs to the language of controversy rather than to the language of defamation.

And, before affirming the district judge’s opinion, Posner includes this sentence designed to flatter set theorists everywhere.

As we emphasized in the Underwager case, judges are not well equipped to resolve academic controversies, of which a controversy over Cantor’s diagonal process is a daunting illustration…


Acknowledgments: Our thanks to Peter Smith and his blog, Logic Matters, where we first learned of this story. Cover image from the Bad Postcards Tumblr page.

Advertisements

Life on the Poincaré Disk

Just at this time I left Caen, where I was then living, to go on a geological excursion under the auspices of the school of mines. The changes of travel made me forget my mathematical work. Having reached Coutances, we entered an omnibus to go some place or other. At the moment when I put my foot on the step the idea came to me, without anything in my former thoughts seeming to have paved the way for it, that the transformations I had used to define the Fuchsian functions were identical with those of  non-Euclidean geometry. I did not verify the idea; I should not have had time, as, upon taking my seat in the omnibus, I went on with a conversation already commenced, but I felt a perfect certainty. On my return to Caen, for conscience’ sake I verified the result at my leisure.

-Henri Poincaré, Science and Method

You’re out for a walk one day, contemplating the world, and you suddenly have an out-of-body experience, your perspective floating high above your corporeal self. As you rise, everything seems perfectly normal at first, but, when you reach a sufficient altitude, you notice something strange: your body appears to be at the center of a perfect circle, beyond which there is simply…nothing!

You watch yourself walk towards the edge of the circle. It initially looks like you will reach the edge in a surprisingly short amount of time, but, as you continue watching, you notice yourself getting smaller and slowing down. By the time you are halfway to the edge, you are moving at only 3/4 of your original speed. When you are 3/4 of the way to the edge, you are moving at only 7/16 of your original speed. Maybe you will never reach the edge after all? What is happening?

At some point, you see your physical self notice some friends, standing some distance away in the circle. You wave to one another, and your friends beckon you over. You start walking toward them, but, strangely, you walk in what looks not to be a straight line but rather an arc, curving in towards the center of the circle before curving outward again to meet your friends. And, equally curiously, your friends don’t appear to be surprised or annoyed by your seemingly inefficient route. You puzzle things over for a few seconds before having a moment of insight. ‘Oh!’ you think. ‘My physical body is living on a Poincaré disk model for hyperbolic geometry, which my mind has somehow transcended during this out-of-body experience. Of course!”


The Poincaré disk model, which was actually put forth by Eugenio Beltrami, is one of the first and, to my mind, most elegant models of non-Euclidean geometry. Recall from our previous post that a Euclidean geometry is a geometry satisfying Euclid’s five postulates. The first four of these postulates are simple and self-evident. The fifth, known as the Parallel Postulate (recall also that two lines are parallel if they do not intersect), is unsatisfyingly complex and non-immediate. To refresh our memories, here is an equivalent form of the Parallel Postulate, known as Playfair’s Axiom:

Given any line \ell and any point P not on \ell, there is exactly one line through P that is parallel to \ell.

A non-Euclidean geometry is a geometry that satisfies the first four postulates of Euclid but fails to satisfy the Parallel Postulate. Non-Euclidean geometries began to be seriously investigated in the 19th century; Beltrami, working in the context of Euclidean geometry, was the first to actually produce models of non-Euclidean geometry, thus proving that, supposing Euclidean geometry is consistent, then so is non-Euclidean geometry.

The Poincaré disk model, one of Beltrami’s models, is a model for hyperbolic geometry, in which the Parallel Postulate is replaced by the following statement:

Given any line \ell and any point P not on \ell, there are at least two distinct lines through P that are parallel to \ell.

Points and lines are the basic objects of geometry, so, to describe the Poincaré disk model, we must first describe the set of points and lines of the model. The set of points of the model is the set of points strictly inside a given circle. For concreteness, let us suppose we are working on the Cartesian plane, and let us take the unit circle, i.e., the circle of radius one, centered at the origin, as our given circle. The points in the Poincaré disk model are then the points in the plane whose distances from the origin are strictly less than one.

Lines in the Poincaré disk model (which we will sometimes call hyperbolic lines) are arcs formed by taking one of the following type of objects and intersecting it with the unit disk:

  1. Straight lines (in the Euclidean sense) through the center of the circle.
  2. Circles (in the Euclidean sense) that are perpendicular to the unit circle.

(These can, of course, be seen as two instances of the same thing, if one takes the viewpoint that, in Euclidean space, straight lines are just circles of infinite radius.)

Droites_disquePoincare.svg
D, D1, and D2 are all lines in the Poincaré disk model. By Jean-Christophe BENOIST, Own work – CC BY 3.0

It’s already pretty easy to see that this geometry satisfies our hyperbolic replacement of the Parallel Postulate. In fact, given a line \ell and a point P not on \ell, there are infinitely many lines through P parallel to \ell. Here’s an illustration of a typical case, with three parallel lines drawn:

hyperbolic
Three lines passing through a given point, parallel to a given line. Source: William Barker

We’re not quite able right now to prove that the disk model satisfies the first four of Euclid’s postulates, in part because we haven’t yet specified what it means for two line segments in the model to be be congruent (we don’t, for example, have a notion of distance in our model yet). We’ll get to this in just a minute, but let us first show that our model satisfies the first postulate: Given any two distinct points, there is a line containing both of them.

To this end, let A and B be two points in the disk. If the (Euclidean) line that contains A and B passes through the center of the disk, then this is also a line in the disk model, and we are done. Otherwise, the (Euclidean) line that contains A and B does not pass through the center of the disk. In this case, we use the magic of circle inversion, which we saw in a previous post. Let A' by the result of inverting A across the unit circle. Now A, A', and B are distinct points in the Cartesian plane, so there is a unique circle (call it \gamma) containing all three. Since A and A' are both on the circle, it is perpendicular to the unit circle. Therefore, its intersection with the unit disk is a line in the disk model containing both A and B. Here’s a picture:

print copy
Hyperbolic line containing A and B. Source: Euclid and Beyond by Robin Hartshorne

We turn now to distance in the Poincaré disk model. And here, for the sake of brevity, I’m not even going to try to explain why things are they way they are but will just give you a formula. Given two points A and B in the disk, consider the hyperbolic line containing them, and let P and Q be the points where this line meets the boundary circle (with P closer to A and Q closer to B). Then the hyperbolic distance between A and B is given by:

d(A,B) = \mathrm{ln}(\frac{|PB|\cdot|AQ|}{|PA|\cdot|BQ|}).

This is likely inscrutable right now. That’s fine. Let’s think about what it means for this to be the correct notion of distance, though. For one thing, it means that, given two points in the disk model, the shortest path between them is not, in general, the straight Euclidean line that connects them, but rather the hyperbolic line that connects them. This explains your body’s behavior in the story at the start of this post. When you were walking over to your friends, what appeared to your mind (which was outside the disk, in the Euclidean realm) as a curved arc, and therefore an inefficient path, was in fact a hyperbolic line and, because your body was inside the hyperbolic disk, the shortest path between you and your friends.

This notion of distance also means that distances inside the disk which appear equal to an external Euclidean observer in fact get longer and longer the closer they are to the edge of the disk. This is also consistent with the observations at the beginning of the post: as your body got further toward the edge of the disk, it appeared from an external viewpoint to be moving more and more slowly. From a viewpoint inside the disk, though, it was moving at constant speed and would never reach the edge of the disk, which is infinitely far away. The disk appears bounded from the external Euclidean view, but from within it is entirely unbounded and limitless.

Let’s close by looking at two familiar shapes, interpreted in the hyperbolic disk. First, circles. Recall that a circle is simply the set of points that are some fixed distance away from a given center. Now, what happens when we interpret this definition inside the hyperbolic disk? Perhaps somewhat surprisingly, we get Euclidean circles! (Sort of.) To be more precise, hyperbolic circles in the Poincaré disk model are precisely the Euclidean circles that lie entirely within the disk. (I’m not going to go through the tedious calculations to prove this; I’ll leave that up to you…) Beware, though! The hyperbolic center of the circle is generally different from the Euclidean center. (This should make sense if you think about our distance definition. The hyperbolic center will be further toward the edge of the disk than the Euclidean center, coinciding only if the Euclidean center of the circle is in fact the center of the hyperbolic disk.)

Next, triangles. A triangle is, of course, a polygon with three sides. This definition works perfectly fine in hyperbolic geometry; we simply require that our sides are hyperbolic line segments rather than Euclidean line segments. If we assume the first four of Euclid’s postulates, then the Parallel Postulate is actually equivalent to the statement that the sum of the interior angles of a triangle is 180 degrees. In the Poincaré disk model (and, in fact, in any model of hyperbolic geometry) all triangles have angles that sum to less than 180 degrees. This should be evident if we look at a typical triangle:

hqdefault
A typical triangle in the Poincaré disk model.

Things become interesting when you start to ask how much less than 180 degrees a hyperbolic triangle has. The remarkable fact is that the number of degrees in a hyperbolic triangle is dependent entirely on its (hyperbolic) area! The smaller a triangle is, the larger the sum of its interior angles: as triangles get smaller and smaller, approaching a single point, the sum of their angles approaches 180 degrees from below. Correspondingly, as triangles get larger, the sum of their angles approaches 0 degrees. In fact if we consider an “ideal triangle”, in which the three vertices are in fact points on the bounding circle (and thus not real points in the disk model), then the sum of the angles of this “triangle” is actually 0 degrees!

popup_3
“Ideal” triangle with interior angles adding to zero.

A consequence of this is the fact that, in the Poincaré disk model, if two triangles are similar, then they are in fact congruent!

This leads us to our final topic: one of the perks of living in a Poincaré disk model. Perhaps the most frequent complaint I hear from people living on a Euclidean plane is that there aren’t enough ways to tile the plane with triangles. Countless people come up to me and say, “Chris, I want to tile the plane with triangles, and I want this tiling to have the following two pleasing properties:

  1. All of the triangles are congruent, they don’t overlap, and they fill the entire plane.
  2. At every vertex of the tiling, all angles meeting that vertex are the same.

But there are only four essentially different ways of doing this, and I’m tired of all of them! What should I do?”

(Exercise for the reader: Find all four such tilings!)

It just so happens that I have a simple answer for these people: “Move to a Poincaré disk model, where there are infinitely many tilings with these properties!” Here are just a few (all by Tamfang and in the public domain):

H2checkers_237
Right triangles. The smallest, in fact, that can tile the Poincaré disk model.
triangle2
Larger right triangles.
triangle3
The largest right “triangles”, each with two “ideal” vertices on the edge of the disk.
triangle4
The dual to a tiling hidden in Escher’s Circle Limit III, the cover image to this post.
triangle5
Equilateral triangles.
triangle6
The largest “triangles”, each with three ideal vertices.

I’ll leave you with that! Hyperbolic geometry is fascinating, and I encourage you to investigate further on your own. The previous mentioned Euclid and Beyond, by Hartshorne, is a nice place to start.

This also wraps up (for now, at least) a couple of multi-part investigations here at Point at Infinity: a look at the interesting geometry of circles, which started in our post on circle inversion, and a look at various notions of independence in mathematics, the other posts being here and here. Join us next time for something new!


Cover Image: M. C. Escher, Circle Limit III

Measuring III: Paris

The Setting:

Fin de siècle Paris. The 1900 International Congress of Mathematicians takes place in the city. David Hilbert gives the opening address, laying out his vision for the future of mathematics in a seminal list of 23 unsolved problems. First on the list is Cantor’s Continuum Hypothesis, the most prominent problem in the fledgling field of set theory. Motivated by the Congress, Hilbert’s speech, and a venerable professor receptive to Cantor’s radical ideas, three brilliant young French mathematicians make sudden, bold advances in set theory and analysis, changing mathematics forever in just a few short years.

The characters:

Camille Jordan. A respected Parisian mathematician and professor. Introduces Cantorian set theory to Paris through his lectures. Makes substantial progress in measure theory by extensively studying a finitely-additive measure on certain sets of real numbers that comes to be known as the Jordan measure. Known for his unorthodox notational decisions.

Émile Borel. Doctoral thesis in 1898. Mathematician, socialite, politician. Member of the French National Assembly (1924-1936), Minister of Marine in the cabinet of Paul Painlevé (1925) (also a mathematician), member of the French Resistance during World War II. Introduces the class of Borel sets of real numbers and shows that a measure can be defined on them. Provides refuge to Marie Curie during her scandal of 1911. Becomes frustrated by set theory. Stops doing mathematics in 1914.

René-Louis Baire. Doctoral thesis in 1899. Early student of Borel. Grows up in a poor Parisian family, suffers his entire life from delicate health and agoraphobia. Feels the world treats him unfairly, does poorly on oral exams, is given teaching posts beneath his ability. Defines a new hierarchy of functions that goes beyond the continuous functions that had predominated in mathematics. Proves what becomes known as the Baire Category Theorem, one of the seminal theorems in general topology. Breakdowns in health lead him to leave mathematics around 1914.

Henri Lebesgue. Doctoral thesis in 1902: “Integral, Length, Area” contains many breakthroughs. Also an early student of Borel. Develops the theory of Lebesgue measure and Lebesgue integration. Lebesgue measure is a countably additive measure, extending the Jordan measure and forming the foundation for modern analysis. Strained relations develop between Lebesgue and Borel, his doctoral supervisor, over a number of issues, including the Dreyfus Affair and competition over priority for ideas in measure theory.

The Axiom of Choice. Introduced in the early twentieth century and instantly controversial for its assertion of the existence of sets that cannot be explicitly constructed. The young French mathematicians, who so readily adopted Cantor’s ideas on infinity, feel that the Axiom of Choice goes too far and retreat from their earlier explorations, and, in some cases, even from mathematics. Set theory, seemingly going against the strict rationalist tradition of the Enlightenment that prevails in France at the time, moves east, to Poland and Russia.

Selected Quotes:

Higher infinities … have a whiff of form without matter, which is repugnant to the French spirit.

-Henri Poincaré, rival of David Hilbert and opponent of set theory

Like many of the young mathematicians, I had been immediately captivated by the Cantorian theory; I don’t regret it in the least, for that is one mental exercise that truly opens up the mind.

-Borel

Such reasoning does not belong to mathematics.

-Borel, on the Axiom of Choice

I will try never to speak of a function without defining it effectively; I take in this way a very similar point of view to Borel … An object is defined or given when one has said a finite number of words applying to this object and only to this one; that is when one has named a characteristic property of the object.

-Lebesgue

Preview of Next Act

Cracow, Poland, 1916: Hugo Steinhaus, fresh from his graduation in Göttingen, walks through a park and overhears a stranger say the words, “Lebesgue integral.” He introduces himself to said stranger, who happens to be Stefan Banach. The two go on to found the great Lwów school of mathematics, which revolutionizes set theory, topology, and analysis.

Credits

Quotes sourced from the fascinating book, Naming Infinity, by Loren Graham and Jean-Michel Kantor.

Cover image: Paris Street; Rainy Day by Gustave Caillebotte